Reg. No. :

Name :

Fourth Semester B.Tech. Degree Examination, February 2016 (2013 Scheme)

13.401: PROBABILITY, RANDOM PROCESSES AND NUMERICAL TECHNIQUES (FR)

Time: 3 Hours Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks...

1. If the p d f of a continuous random variable X is given by

The Bower for the Text is the Boltzman and the Control

$$f(x) = \begin{cases} k(1-x^2), & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Find a) the value of k and

- b) the probability $P(0.5 \le x \le 2)$
- 2. If X follows Poisson distribution and if 3P(X=2)=2P(X=1), find P(X=0) and P(X=3).
- 3. The auto correlation function for a stationary process X(t) is given by $R_X(\tau) = 9 + 2e^{-|\tau|}$. Find the mean value of the random variable $Y = \int_0^2 X(t) dt$ and variance of X(t).
 - 4. Consider a constant random process X(t) = c, where c is a random variable with mean μ and variance σ^2 . Examine whether X(t) is mean ergodic.

to he to will will distort in a

5. Find the cubic polynomial which takes the following values:

X	0	· .1	2	3
f(x)	1	2	1	10

PART-B

Answer one full question from each Module. Each question carries 20 marks.

Module-I

- 6. a) Derive the mean and variance of binomial distribution.
 - b) In a continuous distribution, the probability density is given by f(x) = kx(2-x), 0 < x < 2. Find k, mean, variance and the distribution function.
 - c) The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda = 1/2$.
 - i) What is the probability that the repair time exceeds 2 hours?
 - ii) What is the conditional probability that a repair takes at least 10 hours given that its duration exceeds 9 hours?
- 7. a) In 800 families with 5 children each, how many would you expect to have i) 3 boys ii) 4 girls iii) at most 2 girls
 - b) In a normal distribution 7% of items are below 35 and 80% of items are below 63. What are the mean and standard deviation of the distribution?
 - c) If X is uniformly distributed in [-2, 2] find i) P(x < 0) and ii) $P(|x 1| \ge \frac{1}{2})$.

Module - II

- 8. a) The joint p d f of X and Y is given by $f(x, y) = kxye^{-(x^2+y^2)}$, x > 0, y > 0. Find the value of k and prove that X and Y are independent.
 - b) Find the coefficient of correlation from the following data:

X	5	10	15	20	25
Υ	16	19	23	26	30

- c) The joint probability function of two random variables X and Y is given by f(x,y) = c(2x + y), where x = 0, 1, 2 and y = 0, 1, 2, 3 and f(x, y) = 0 otherwise.
 - i) Find c and ii) Find $P(X \ge 1, Y \le 2)$

9. a) The joint density function of random variables X and Y is given by

$$f(x, y) = 8xy \qquad 0 < x < 1, 0 < y < x$$

$$= 0 \qquad \text{else where}$$

$$Find P\left(y < \frac{1}{8}/x < \frac{1}{2}\right).$$

b) Given a random variable Y with characteristic function $\varphi(\omega) = E[e^{i\omega Y}]$ and a random process defined by $X(t) = \cos(\lambda t + Y)$, show that $\{x(t)\}$ is stationary in the wide sense if $\varphi(1) = \varphi(2) = 0$.

Module - III

- 10. a) Show that the random process $X(t) = A\cos(\omega_0 t + \theta)$ is wide sense stationary, if A and ω_0 are constants and θ is uniformly distributed random variable in $(0, 2\pi)$.
 - b) Find Power spectral density of a WSS process if its auto-correlation function is $R(\tau) = \rho e^{-\rho|\tau|}$.
- 11. a) A random process is defined as x(t)=Acos ωt + B sin ωt, where A and B are random variables with E(A)=0, E(B)=0, E(A²) = E(B²) and E(AB) = 0. Show that the process X(t) is mean ergodic.
 - b) Find the auto-correlation function of the process {X(t)}, for which the power spectral density is given by

$$S(\omega) = \begin{cases} 1 + \omega^2, & |\omega| \le 1 \\ 0, & |\omega| > 1 \end{cases}$$

Module - IV

- 12. a) Find a real root of the equation $x^3 2x 5 = 0$ by Regula-Falsi method.
 - b) Find 3/24 using Newton-Raphson method.
 - c) From the following table find f(0.15) and f(0.7).

X	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	2.68	3.04	3.38	3.68	3.96	4.21

13. a) Apply Gauss-Seidel method to solve the equations

$$27x + 6y - z = 85$$
,
 $x + y + 54z = 110$,
 $6x + 15y + 2z = 72$

b) Given the values

x	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Evaluate f(9).

- c) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ using
 - i) Trapezoidal rule
 - ii) Simpson's 1/3rd rule.

to viven the sale of

(in) [160 [30:1] [40:1] -35:0] --0-

- vuluare 1/8)